2z^2+(12+8i)z-40+24i=0

Simple and best practice solution for 2z^2+(12+8i)z-40+24i=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2z^2+(12+8i)z-40+24i=0 equation:


Simplifying
2z2 + (12 + 8i) * z + -40 + 24i = 0

Reorder the terms for easier multiplication:
2z2 + z(12 + 8i) + -40 + 24i = 0
2z2 + (12 * z + 8i * z) + -40 + 24i = 0

Reorder the terms:
2z2 + (8iz + 12z) + -40 + 24i = 0
2z2 + (8iz + 12z) + -40 + 24i = 0

Reorder the terms:
-40 + 24i + 8iz + 12z + 2z2 = 0

Solving
-40 + 24i + 8iz + 12z + 2z2 = 0

Solving for variable 'i'.

Move all terms containing i to the left, all other terms to the right.

Add '40' to each side of the equation.
-40 + 24i + 8iz + 12z + 40 + 2z2 = 0 + 40

Reorder the terms:
-40 + 40 + 24i + 8iz + 12z + 2z2 = 0 + 40

Combine like terms: -40 + 40 = 0
0 + 24i + 8iz + 12z + 2z2 = 0 + 40
24i + 8iz + 12z + 2z2 = 0 + 40

Combine like terms: 0 + 40 = 40
24i + 8iz + 12z + 2z2 = 40

Add '-12z' to each side of the equation.
24i + 8iz + 12z + -12z + 2z2 = 40 + -12z

Combine like terms: 12z + -12z = 0
24i + 8iz + 0 + 2z2 = 40 + -12z
24i + 8iz + 2z2 = 40 + -12z

Add '-2z2' to each side of the equation.
24i + 8iz + 2z2 + -2z2 = 40 + -12z + -2z2

Combine like terms: 2z2 + -2z2 = 0
24i + 8iz + 0 = 40 + -12z + -2z2
24i + 8iz = 40 + -12z + -2z2

Reorder the terms:
-40 + 24i + 8iz + 12z + 2z2 = 40 + -12z + -2z2 + -40 + 12z + 2z2

Reorder the terms:
-40 + 24i + 8iz + 12z + 2z2 = 40 + -40 + -12z + 12z + -2z2 + 2z2

Combine like terms: 40 + -40 = 0
-40 + 24i + 8iz + 12z + 2z2 = 0 + -12z + 12z + -2z2 + 2z2
-40 + 24i + 8iz + 12z + 2z2 = -12z + 12z + -2z2 + 2z2

Combine like terms: -12z + 12z = 0
-40 + 24i + 8iz + 12z + 2z2 = 0 + -2z2 + 2z2
-40 + 24i + 8iz + 12z + 2z2 = -2z2 + 2z2

Combine like terms: -2z2 + 2z2 = 0
-40 + 24i + 8iz + 12z + 2z2 = 0

Factor out the Greatest Common Factor (GCF), '2'.
2(-20 + 12i + 4iz + 6z + z2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(-20 + 12i + 4iz + 6z + z2)' equal to zero and attempt to solve: Simplifying -20 + 12i + 4iz + 6z + z2 = 0 Solving -20 + 12i + 4iz + 6z + z2 = 0 Move all terms containing i to the left, all other terms to the right. Add '20' to each side of the equation. -20 + 12i + 4iz + 6z + 20 + z2 = 0 + 20 Reorder the terms: -20 + 20 + 12i + 4iz + 6z + z2 = 0 + 20 Combine like terms: -20 + 20 = 0 0 + 12i + 4iz + 6z + z2 = 0 + 20 12i + 4iz + 6z + z2 = 0 + 20 Combine like terms: 0 + 20 = 20 12i + 4iz + 6z + z2 = 20 Add '-6z' to each side of the equation. 12i + 4iz + 6z + -6z + z2 = 20 + -6z Combine like terms: 6z + -6z = 0 12i + 4iz + 0 + z2 = 20 + -6z 12i + 4iz + z2 = 20 + -6z Add '-1z2' to each side of the equation. 12i + 4iz + z2 + -1z2 = 20 + -6z + -1z2 Combine like terms: z2 + -1z2 = 0 12i + 4iz + 0 = 20 + -6z + -1z2 12i + 4iz = 20 + -6z + -1z2 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.

See similar equations:

| (-3)(-12)(-1/2) | | 3x+4x=17 | | (sin5a/sina) | | (4z/7)=6 | | x(x)+2x=675 | | 420=x(x)-x | | -14/3 | | x^4+5x^3-3x^2+13x+10= | | f(x)=kx^2+3x-2 | | 9=3+x | | 5x-5+3x^2-3x=0 | | (-8)+3= | | 3x^2-5xy-2y^2-x+2y=0 | | 6x-8x^2= | | B=d/(1-v) | | (1+2ix)x+(3-i)y=2+i | | 1+7(3t+2)=t-5 | | ln(x-5)+ln(2x)=ln(12) | | 5k+4/8=-3 | | 110-7+6x(9+5)= | | -6(-6+6)-2n=-116 | | 5u-7/4=-2 | | 5u-7/-4=-2 | | -96=6(4n-1)-6n | | y=2x+x+7 | | -16x+16-6x=-116 | | 144=(20-2x)(10-2x) | | x(7-6x)=43 | | -6=5x-8/7 | | 4/15 | | 5/x-1=15/18 | | 9-4r/7=5 |

Equations solver categories